If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3w^2)+15w=0
a = 3; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·3·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*3}=\frac{-30}{6} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*3}=\frac{0}{6} =0 $
| 94+(x-45)=180 | | 5x-11.4=-0.9x-17.4 | | -.10(46)+0.70x=0.05(x-14) | | 5w+4=2(4w-7) | | 5.25w=-73.5 | | 5.1x-11.4=-6.8+12.7x | | 15+45=4x | | 56.25+(0.17x)=x | | 94+(x+62)=180 | | 2p-5.2=-2.2 | | 2+x+x/4=189.5 | | 2t^2-25t+12=0 | | w/2=-1/20 | | 18.88+w=28.88 | | (3w)(3w)+15w=0 | | 21x+35=(7 | | 2d+-4d+-7d-9d-d=-5 | | 15+8+x=63 | | v/2–4=2 | | v2–4=2 | | 2x+6-8x=7x+4 | | -13-8=r/9 | | 9.25m=-92.5 | | 4x-12+6x+4=72 | | 3=x20 | | 9+a=2 | | 5.92+7.86n=-76.61 | | -7=32-9n | | 6x-11=9x+27 | | 5.92-7.86n=-76.61 | | (4u+9)(1+u)=0 | | 6x-8(-5)=22 |